Progress and challenges in managing multiple stressors of Muskoka and Haliburton lakes

Norman Yan

York University and

Dorset Environmental Science Centre

Acknowledgements

- Dorset Environmental Science Centre (DESC) for supporting both my lab and long-term monitoring of Muskoka lakes
- My Dorset colleagues (Andrew, Chris, Don, Huaxia, Jim, Keith, Peter)
- York U, CFI and NSERC for financial support
- My lab technicians: Dallas, Leanne and Courtney, and Martha Celis Salgado the "*Daphnia* whisperer"
- Paul for the invitation

Objectives

- 1. To review the progress and challenges in the management of multiple stressors affecting Muskoka and Haliburton lakes, especially to:
 - 1. Prove we have solved many large problems of the past, but
 - 2. Some other long-standing problems remain, while
 - 3. Some new problems are emerging, and
 - 4. They may well interact
- 2. To encourage the generation of the <u>knowledge</u> and the <u>will</u> needed to deal with these management issues

http://www.pewenvironment.org/uploadedImages/PEG/Publications/Other_Resource/Surface-Water-map-credit-Global-Forest-Watch-Canada-hi-res.jpg

The good news We have fixed many problems that affected our lakes, and were once thought too difficult to solve

- Eutrophication
- Acid rain
- DDT and other chlorinated pesticides
- Lead
- Ozone Depletion
- The cosmetic use of pesticides

Eutrophication

*Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Oligotrophication of Gravenhurst Bay

*Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Acid Rain

Eutrophication

*Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

SO₂ emissions have fallen

Data from J. Bailey, MOE

Eutrophication

*Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Lake acidity has declined in Muskoka (31 lakes sampled monthly)*

Eutrophication

*Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Interactions

*Palmer et al. 2011 CJFAS

And zooplankton species richness has increased*

Eutrophication

*Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Florida State Archives

DDT's use was banned in the USA in 1972

Eutrophication

Acid Rain

*DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

DDT in breast milk of N. American women*

Eutrophication

Acid Rain

*DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

^{*} Watts et al. 2007 Status, Distribution and the future of bald eagles in the Chesapeake Bay Area. Waterbirds 30: 25-38

Eutrophication

Acid Rain

*DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Lead pollution from gasoline

Reed Saxon / AP File

Eutrophication

Acid Rain

DDT

*Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Blood lead levels of Ontarions reflected use of leaded gasoline (Thomas et al. 1999)

Eutrophication

Acid Rain

DDT

*Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Mean Lead Concentrations (ppm) in Toronto Maple Tree Foliage 1971 - 2004

Eutrophication

Acid Rain

DDT

*Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Global chloroflourocarbon production (t/year)*

Eutrophication

Acid Rain

DDT

Lead

*Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

The park behind my house

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

*Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Can we solve environmental problems?

- It takes knowledge
 - Problem recognition, identification of causes, evaluation of possible solutions
- It takes will
 - Public engagement, education, hope
- It takes action
 - policy change, intervention, re-assessment

- *Eutrophication
- *Acid Rain
- *DDT
- *Lead
- *Ozone Depletion
- *Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

*Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Climate change (departures of air temperature from 1950 to 1980 mean)

Figure 1–1 Annual Canadian Temperature Departures and Long-term Trend, 1948–2011 (°C)

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

*Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

All life needs lots of calcium (Ca)

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

*Calcium decline

Road Salt

Invaders

Novel chemicals

Calcium levels are falling (Ca in the A lakes, 1976-2011)

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

*Calcium decline

Road Salt

Invaders

Novel chemicals

Lake water Ca trend in Plastic Lake

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

*Calcium decline

Road Salt

Invaders

Novel chemicals

1,500,000 tonnes of salt is used to de-ice Canada's roads

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

*Road Salt

Invaders

Novel chemicals

Current Cl levels may be problematic in lakes near highways (Survey of 180 Muskoka lakes in 2010)

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

*Road Salt

Invaders

Novel chemicals

All of the lakes with high Cl are beside wintermaintained highways, eg. Jevins Lake

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

*Road Salt

Invaders

Novel chemicals

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

*Invaders

Novel chemicals

Novel chemicals

- Pharmaceuticals
- Flame retardants
- Cosmetics
- Plasticizers
- Nano-materials
- Micro-plastics

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

*Novel chemicals

Is the limnology and the ecology of our lakes changing?

- Lake physics fall temperatures have warmed
- Water quality pH, Ca, TP, DOC & Cl
- Ecology food quality and quantity, predators

• Might these changes interact?

Eutrophication

Acid Rain

DDT

Lead

Ozone Depletion

Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Low Ca is more damaging to *Daphnia* at high temperature

Ashforth & Yan 2008 L&O

Low Ca prevents neck teeth induction in *Daphnia* increasing risk of predation*

^{*}Riessen et al. 2012 PNAS

Oligotrophication increases the risk of road salt*

^{*}Brown and Yan (in prep)

Bythotrephes interferes with recovery of species richness from historical acidification*

- richness & diversity ↑
 - ↑ pH
 - ↑ temperature
 - ↑ TP
- Bythotrephes had a negative impact

Bythotrephes Absent

Bythotrephes Present

In summary, the threat of acidification is falling, but Calcium decline, road salt, and *Bythotrephes* are current widespread drivers of change, and development and climate pressures are real.

We must remain engaged to protect our lakes

Can we solve these developing problems?

- It takes knowledge
 - Problem recognition, identification of causes, evaluation of possible solutions, <u>modelling of time frames</u>
- It takes will
 - Public engagement, education, hope
- It takes action
 - policy change, intervention, re-assessment

- *Eutrophication
- *Acid Rain
- *DDT
- *Lead
- *Ozone Depletion
- *Lawn pesticides

Development

Mercury

Climate Change

Calcium decline

Road Salt

Invaders

Novel chemicals

Will we solve these developing problems??